Cointime

扫码下载App
iOS & Android

AI-Driven Trading Platform Nivex: Rebuilding the Crypto Trading Experience and Risk Management

个人专家

On January 7, 2026, an AMA titled "AMA – CRYPTO INFINITY <> Nivex_Official | REWARD $100" was held, featuring Simon V. Hardy, Co-Founder and CEO of Nivex, together with the Crypto Infinity team. The discussion covered AI-driven trading, futures risk control, asset-listing logic, incentive mechanisms, and long-term user value. Key takeaways include:

1. The core issue in crypto trading is not a lack of features, but fragmented decision-making and risk logic.

Simon noted that traders are often forced to move between exchanges, wallets, and yield products, with no unified framework for risk management or decision-making. Nivex's goal is not to simply add more features, but to integrate AI execution, institutional-grade strategies, and automated risk management into a single, unified trading environment.

2. Platform design prioritizes preventing early elimination of beginners rather than optimizing for professionals.

Nivex believes most traders experience losses in their first two to three years. As a result, the platform focuses less on maximizing efficiency for seasoned traders and more on reducing learning and trial-and-error costs for new users-by simplifying the front-end while preserving an institutional-grade core engine.

3. AI and copy-trading mechanisms allow beginners to learn without inevitably losing money.

The team explained that new users can directly access copy trading, fixed-investment plans, and AI-assisted strategies without complex parameter settings. Beginners and professional users share the same underlying trading engine, enabling learning and income generation to occur in parallel.

4. Asset-listing decisions are driven by "risk-adjusted liquidity," not market hype.

Simon emphasized that after observing recent market cycles, the platform has become far more selective. Listing criteria focus on sustainable market depth, derivatives liquidity, performance under extreme conditions, and manipulation risk-rather than short-term trends or speculative sentiment.

5. The futures system is designed for extreme market conditions from day one, not ideal scenarios.

Nivex's futures engine assumes high volatility as the norm. Through dynamic margin recalculation, multi-layer liquidation buffers, AI-based position control, and strategy-level staged stop-loss mechanisms, the platform aims to reduce cascading liquidations. The team stressed that the core objective is drawdown control, not maximum leverage.

6. AI trading is not based on fixed rules, but on continuous adaptation.

The team differentiated traditional quantitative bots from adaptive AI strategies. Unlike static rule-based systems, Nivex's AI continuously adjusts to bull and bear cycles, volatility shifts, liquidity structures, and participant behavior.

7. Copy trading emphasizes risk transparency rather than headline returns.

Instead of highlighting short-term profit rankings, Nivex prioritizes metrics such as historical drawdowns, volatility, trading frequency, average holding time, and risk classification-encouraging users to choose strategies aligned with their capital size and risk tolerance.

8. Long-term investment products aim to absorb decision-making burden on behalf of users.

For users who prefer not to monitor markets constantly, Nivex offers dollar-cost averaging, yield products, and institutional-grade strategy combinations, reducing daily decision pressure while enabling continued market participation.

9. Security is treated as infrastructure, not a marketing feature.

Simon stated that Nivex approaches security as a system-level discipline. Through hot-cold wallet separation, multi-signature custody, AI-driven risk monitoring, compliant KYC/AML frameworks, and ongoing third-party audits, the platform seeks to ensure long-term operational stability.

10. Incentive mechanisms are designed for long-term participation, not short-term reward extraction.

The team explained that rewards are tied to real trading behavior, volume, and activity, and are released in stages. This structure discourages "reward-and-leave" behavior and encourages sustained engagement with the platform's products and services.

11. Nivex's differentiation lies not in tools, but in "decision intelligence."

Simon concluded that while traditional exchanges primarily offer trading tools, Nivex aims to deliver decision-layer capabilities-continuously providing trading approaches that work under current market conditions, rather than relying on strategies that succeeded in the past.

评论

所有评论

推荐阅读

  • 特朗普将就美联储主席一职面试里德

    特朗普将就美联储主席一职面试里德(Rick Rieder)。面试将于本周举行。

  • 哈塞特:仍对美联储职位感兴趣

    美国白宫国家经济委员会主任哈塞特:仍对美联储职位感兴趣。不知道美国总统特朗普是否批准了对美联储的调查,美联储主席鲍威尔是个好人。

  • BTC跌破91000美元

    行情显示,BTC跌破91000美元,现报90997.44美元,24小时涨幅达到0.26%,行情波动较大,请做好风险控制。

  • 美国现货以太坊ETF上周净流出6857万美元

    根据SoSoValue数据,上周交易日(美东时间1月5日至1月9日)美国现货以太坊ETF上周净流出6857万美元。

  • BTC突破92000美元

    行情显示,BTC突破92000美元,现报92041.92美元,24小时涨幅达到1.49%,行情波动较大,请做好风险控制。

  • 长三角一体化大模型发布 AI将为区域发展提供决策支撑

    长三角一体化大模型发布与场景应用链接大会在上海召开。会上,由中国区域经济50人论坛成员、上海财经大学长三角与长江经济带发展研究院执行院长张学良教授团队牵头建设的长三角一体化大模型(YRD-P1)正式发布。张学良表示,YRD-P1模型是在多年城市与区域科学研究积累的基础上构建的专用大模型。模型依托持续积累的政策文本、统计数据、学术成果、产业链信息及地理空间数据,面向长三角区域进行深度定制开发,强调知识体系的系统性、权威性和可溯源性,致力于为区域协调发展提供更加智能、精准、可持续的决策支撑工具。

  • 天普股份:公司涉嫌信息披露违规 股票将于1月12日复牌

    天普股份公告,公司因涉嫌信息披露违规,收到中国证监会下发的《立案告知书》和上海证券交易所的监管警示。公司股票将于2026年1月12日开市起复牌。公司目前生产经营活动正常,但股票价格短期波动较大,累计涨幅较大,已严重偏离上市公司基本面,存在巨大交易风险。2025年前三季度公司实现营业收入2.3亿元,同比下降4.98%;实现归属于上市公司股东的净利润1785.08万元,同比下降2.91%。

  • 日本首相考虑解散众议院,美元兑日元涨幅迅速走高

    日本首相考虑解散众议院。美元兑日元涨幅迅速扩大至 0.66%,报 157.95,创最近一年新高。

  • “美联储传声筒”Nick Timiraos:2025年私营部门雇主平均每月新增6.1万个就业岗位,这是自2003年所谓“无就业复苏”以来,私营部门就业增长最为疲弱的时期。

    “美联储传声筒”Nick Timiraos:2025年私营部门雇主平均每月新增6.1万个就业岗位,这是自2003年所谓“无就业复苏”以来,私营部门就业增长最为疲弱的时期。

  • 失业率意外下降重挫降息预期 债券交易员转看年中行动

    美国国债下跌,交易员几乎抹去了对美联储本月晚些时候降息的押注。此前,12月失业率的降幅超出预期,抵消了总体就业人数增长疲软的影响。周五报告发布后,美国政府债券价格下跌,推高了各期限收益率,涨幅多达3个基点。债券交易员维持了2026年全年总共降息两次的预测,预计首次降息将在年中进行。Natixis North America美国利率策略主管John Briggs表示:“对我们而言,美联储更关注失业率,而不是总体数据中的噪音。因此在我看来,这对美国利率略微利空。”此前,受10月1日至11月12日长达六周的政府停摆影响,9月、10月和11月的劳工报告推迟发布。此次就业数据提供了首份能够反映宏观经济就业趋势的“干净”读数。美联储是否进一步降息,被认为取决于未来几个月劳动力市场的表现。此前,为应对劳动力市场疲软,美联储在过去三次会议上均下调了短期贷款利率的目标区间。然而,部分官员仍对通胀高于目标感到担忧,这被视为限制了进一步宽松的步伐。