Cointime

扫码下载App
iOS & Android

价值“交换”,人工智能初创企业是怎么做的?

个人专家

原文链接:The Give-to-Get Model for AI Startups 

本文作者:David Sacks  编译:CoinTime Candice

大约20年前,一家名为Jigsaw的初创公司开创了一种新的众包模式,即用户向平台贡献数据,以换取对平台服务的使用。Jigsaw在今天基本上被遗忘了,但它所谓的“给予获得”模型可能对需要获得丰富专有数据集来训练模型的人工智能初创公司来说,是非常适合的。这些数据集对于提高人工智能模型的准确性和性能至关重要,可以提供相对于对手的竞争优势,允许针对特定行业的需求进行定制和专业化,并减少对第三方数据源的依赖。本文将讨论Jigsaw模型,它对人工智能的适用性,获得专有训练数据集的挑战,以及它可以应用的行业垂直领域。

Jigsaw和“交换”模型

Jigsaw数据公司由Jim Fowler和Garth Moulton于2004年创立。该公司的主要产品是一个大型、众包、可搜索的数据库,其中包含各行各业数百万的商业联系人。在每个人都有LinkedIn个人资料的时代,这对寻找潜在客户的销售人员来说特别有价值。

Jigsaw的众包模式围绕着积分制展开。用户可以通过贡献自己的业务联系信息,在Jigsaw的平台上创建一个免费帐户。他们还可以将新的联系人添加到数据库中以获得积分,然后用积分查看其他人发布的联系人。不想贡献自己数据的用户可以购买积分。Jigsaw还鼓励用户验证数据库中联系信息的准确性,每做一次更正就奖励他们一些积分。

2010年,Salesforce.com以1.42亿美元收购了Jigsaw,将其更名为“Data.com”,并将其与Salesforce.com生态系统整合。这使得用户可以在他们的CRM系统中直接访问更新的业务联系信息。

人工智能的“交换”模型

用户通过贡献数据来获得积分,并花费积分来获取基于该数据的服务,这种交换模式可能是人工智能初创公司的一种有效方法。在许多行业垂直领域,获得丰富的专有数据集将是产生差异化的人工智能模型的关键挑战。通过激励该行业的专业人士共享必要的数据,人工智能初创公司可以快速培训和改进他们的模型,为这些专业人士服务。

例如,一家“人工智能架构师”初创公司可以为用户贡献建筑计划和CAD图纸提供积分。然后,用户可以通过要求人工智能设计新的计划来消费积分。这种方法可以在各种行业中使用,在这些行业中,用户拥有专有数据,并愿意贡献其中的一部分,以换取利用人工智能能力。

激励用户众包可能是获取大量数据的一种具有成本效益的方式,因为它利用了社区的努力,而不是依赖付费数据收集服务。随着用户贡献更多数据并使用人工智能的服务,模型可以迭代改进,从而获得更好的性能和更有价值的洞察力。

将会有一些重要的问题需要解决。确保所提供数据的质量和准确性至关重要。初创企业可能需要实施验证流程,如同行评审或专家验证,以保持数据质量。处理专有数据还需要解决隐私和知识产权问题。初创企业可能需要确保某些数据仅用于培训目的,并且在如何使用贡献的数据方面是透明的。遵守特定行业的法规也至关重要。

最后,货币化的需求必须与积分制相平衡;否则,用户可能更愿意通过贡献数据而不是为服务付费来永久免费使用该平台。可以对积分进行限制,使用户获得折扣或获得更多的查询,而不是完全免费地享受服务。

不同行业的机会

一种交换、众包的数据收集方法可以应用于目标用户拥有培训数据的许多垂直行业。以下是这种方法可能有用的一些例子:

  1. 医疗和健康数据:人工智能模型可以极大地受益于对不同患者数据的访问,如电子健康记录、医学成像和基因组数据。用户(患者或医疗保健专业人员)可能愿意共享匿名数据以换取积分,然后积分可以用于获得人工智能驱动的健康见解、个性化治疗建议或早期疾病检测。
  2. 法律文件分析:律师事务所和法律专业人员通常可以查阅大量的法律文件,如合同、法院裁决或专利申请。通过共享这些文件,用户可以为训练法律文件分析的人工智能模型做出贡献,而作为回报,可以获得人工智能驱动的法律研究工具或合同审查服务。
  3. 艺术和创意工作:艺术家和设计师可能拥有大量自己的艺术品、草图或设计。共享这些数据可以帮助训练人工智能模型,用于转换艺术风格、生成艺术或设计辅助。然后,用户可以获得人工智能驱动的创意工具或个性化设计建议。
  4. 金融和投资:金融专业人士和投资者可能可以获得专有交易算法、投资组合数据或市场分析报告。通过共享这些数据,他们可以为金融分析和预测的人工智能模型做出贡献。而作为回报,用户可以获得人工智能驱动的投资建议、风险评估或市场预测工具。
  5. 科学研究数据:各个领域的研究人员可能可以获得通过实验或模拟生成的宝贵的数据集。通过共享这些数据,他们可以帮助训练人工智能模型,用于各自领域的数据分析、模式识别或预测性建模。然后,用户可以获得人工智能驱动的研究工具或个性化的研究建议。
  6. 制造和生产数据:参与制造和生产的公司可能拥有有关生产过程、质量控制和设备性能的专有数据。分享这些数据可以改善用于预测性维护、流程优化和质量保证的人工智能模型。然后,用户可以获得人工智能驱动的优化建议或设备监测服务。

结论

对于希望为垂直行业创建人工智能模型的初创公司来说,获得丰富的专有培训数据集将是一项关键性挑战。从这些行业的专业人士那里众包这些数据可能是解决这个问题的绝佳方法。此外,众包其实是创造了一个循环机制:随着用户为模型贡献数据,模型变得更智能、更有能力,从而吸引下一组用户,他们提供下一组数据。而这种数据网络效应应该会在企业周围形成一条强大的护城河。也就是说,初创公司必须积极解决与交换模式相关的潜在风险或不利因素,如数据质量、隐私和知识产权问题,以确保其人工智能模型的长期成功。

*本文由CoinTime整理编译,转载请注明来源。

评论

所有评论

推荐阅读

  • BTC突破79000美元

    行情显示,BTC突破79000美元,现报79010美元,24小时涨幅达到2.66%,行情波动较大,请做好风险控制。

  • 芝加哥期权交易所拟重启二元期权以进军预测市场

    芝加哥期权交易所(Cboe) 正与零售经纪商和做市商进行早期讨论,计划重新推出二元期权合约,旨在竞争快速增长的预测市场。 Kalshi 和 Polymarket 在 1 月的交易额达到 170 亿美元,创下月度历史新高。Cboe 曾于 2008 年推出该产品但随后下架,目前正寻求通过合规设计将该产品重新定位为零售投资者进入期权市场的起点。该计划将受 SEC 或 CFTC 监管。

  • BitMine上周增持约4.17万枚ETH,总持仓超428万枚ETH

    截至美国东部时间2月1日,BitMine加密货币+现金总持有量+“登月计划”总计107亿美元。BitMine持有4,285,125枚ETH(较上周增持41787枚ETH),Bitmine持有的以太坊占以太坊总供应量(1.207亿个ETH)的3.55% 。此外还持有193枚BTC、EightcoHoldings(纳斯达克代码:ORBS)的2000万美元股份以及5.86亿美元无抵押现金。

  • BTC突破78000美元

    行情显示,BTC突破78000美元,现报78013.66美元,24小时跌幅达到0.6%,行情波动较大,请做好风险控制。

  • 特朗普启动120亿美元矿产储备

    据外媒报道,特朗普启动120亿美元矿产储备,美国稀土公司盘前拉升,现涨近6%。

  • 消息人士:SpaceX最早可能在本周宣布与XAI的协议

    消息人士称,SpaceX最早可能在本周宣布与XAI的协议。

  • 白宫将召开加密货币和银行关于稳定币收益率的会议

    据加密记者EleanorTerrett在X平台发文表示,白宫与加密货币及银行机构就稳定币收益问题举行的会议将于美国东部时间今天下午1点开始。

  • 金银「史诗级巨震」之后,可以抄底了吗?

    虽长期牛市逻辑未变,但短期抛压未尽、波动巨大。

  • BTC跌破75000美元

    行情显示,BTC跌破75000美元,现报74991美元,24小时跌幅达到4.9%,行情波动较大,请做好风险控制。

  • ETH跌破2200美元

    行情显示,ETH跌破2200美元,现报2199.95美元,24小时跌幅达到9.91%,行情波动较大,请做好风险控制。